Search results
Results from the WOW.Com Content Network
The limit of a sequence of powers of a number greater than one diverges; in other words, the sequence grows without bound: b n → ∞ as n → ∞ when b > 1. This can be read as "b to the power of n tends to +∞ as n tends to infinity when b is greater than one". Powers of a number with absolute value less than one tend to zero: b n → 0 as ...
They show that such sequences can be formed by rounding to the nearest integer the values of a double exponential function with middle exponent 2. [1] Ionaşcu and Stănică describe some more general sufficient conditions for a sequence to be the floor of a double exponential sequence plus a constant.
A prime number that is one less than a power of two is called a Mersenne prime. For example, the prime number 31 is a Mersenne prime because it is 1 less than 32 (2 5). Similarly, a prime number (like 257) that is one more than a positive power of two is called a Fermat prime—the exponent itself is a power of
For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd.
The reciprocal ratio, 1/15, is less than 0.1, so the same result is obtained. Differences in order of magnitude can be measured on a base-10 logarithmic scale in "decades" (i.e., factors of ten). [2] For example, there is one order of magnitude between 2 and 20, and two orders of magnitude between 2 and 200.
Mathematically, a strict power law cannot be a probability distribution, but a distribution that is a truncated power function is possible: () = for > where the exponent (Greek letter alpha, not to be confused with scaling factor used above) is greater than 1 (otherwise the tail has infinite area), the minimum value is needed otherwise the ...
If n is a power of an odd prime number the formula for the totient says its totient can be a power of two only if n is a first power and n − 1 is a power of 2. The primes that are one more than a power of 2 are called Fermat primes, and only five are known: 3, 5, 17, 257, and 65537. Fermat and Gauss knew of these.
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]