enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Java concurrency - Wikipedia

    en.wikipedia.org/wiki/Java_concurrency

    The Java programming language and the Java virtual machine (JVM) is designed to support concurrent programming. All execution takes place in the context of threads. Objects and resources can be accessed by many separate threads. Each thread has its own path of execution, but can potentially access any object in the program.

  3. Affinity propagation - Wikipedia

    en.wikipedia.org/wiki/Affinity_propagation

    In statistics and data mining, affinity propagation (AP) is a clustering algorithm based on the concept of "message passing" between data points. [1] Unlike clustering algorithms such as k-means or k-medoids, affinity propagation does not require the number of clusters to be determined or estimated before running the algorithm.

  4. Real-time Java - Wikipedia

    en.wikipedia.org/wiki/Real-Time_Java

    Real-time Java is a catch-all term for a combination of technologies that enables programmers to write programs that meet the demands of real-time systems in the Java programming language. Java's sophisticated memory management , native support for threading and concurrency, type safety , and relative simplicity have created a demand for its ...

  5. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  6. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    Assign each non-core point to a nearby cluster if the cluster is an ε (eps) neighbor, otherwise assign it to noise. A naive implementation of this requires storing the neighborhoods in step 1, thus requiring substantial memory. The original DBSCAN algorithm does not require this by performing these steps for one point at a time.

  7. Locality-sensitive hashing - Wikipedia

    en.wikipedia.org/wiki/Locality-sensitive_hashing

    In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.

  8. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  9. Apache Cassandra - Wikipedia

    en.wikipedia.org/wiki/Apache_Cassandra

    Apache Cassandra is a free and open-source database management system designed to handle large volumes of data across multiple commodity servers.The system prioritizes availability and scalability over consistency, making it particularly suited for systems with high write throughput requirements due to its LSM tree indexing storage layer. [2]

  1. Related searches availability vs clustering in java programming tutorial youtube free pdf

    hierarchical clustering methodshierarchical clustering results
    hierarchical clustering exampleshierarchy clustering wikipedia