enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convection–diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Convectiondiffusion...

    The convectiondiffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...

  3. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    is the Diffusion coefficient [2] and is the Source term. [3] A portion of the two dimensional grid used for Discretization is shown below: Graph of 2 dimensional plot. In addition to the east (E) and west (W) neighbors, a general grid node P, now also has north (N) and south (S) neighbors.

  4. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    The convectiondiffusion equation describes the flow of heat, particles, or other physical quantities in situations where there is both diffusion and convection or advection. For information about the equation, its derivation, and its conceptual importance and consequences, see the main article convectiondiffusion equation. This article ...

  5. Maxwell–Stefan diffusion - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Stefan_diffusion

    The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Maxwell [ 1 ] for dilute gases and Josef Stefan [ 2 ] for liquids.

  6. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2] Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation.

  7. False diffusion - Wikipedia

    en.wikipedia.org/wiki/False_diffusion

    Fig 1:Flow domain illustrating false diffusion. In figure 1, u = 2 and v = 2 m/s everywhere so the velocity field is uniform and perpendicular to the diagonal (XX). The boundary conditions for temperature on north and west wall is 100 ̊C and for east and south wall is 0 ̊C. This region is meshed into 10×10 equal grids.

  8. Power law scheme - Wikipedia

    en.wikipedia.org/wiki/Power_law_scheme

    The power-law scheme [1] [2] interpolates the face value of a variable, , using the exact solution to a one-dimensional convection-diffusion equation given below: =In the above equation Diffusion Coefficient, and both the density and velocity remains constant u across the interval of integration.

  9. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    D is the diffusion constant of the solute unit m 2 ⋅s −1, t is time unit s, c 2, c 1 concentration should use unit mol m −3, so flux unit becomes mol s −1. The flux is decay over the square root of time because a concentration gradient builds up near the membrane over time under ideal conditions.