Search results
Results from the WOW.Com Content Network
An early D'Arsonval galvanometer showing magnet and rotating coil. A galvanometer is an electromechanical measuring instrument for electric current.Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The meter movement in a moving pointer analog multimeter is practically always a moving-coil galvanometer of the d'Arsonval type, using either jeweled pivots or taut bands to support the moving coil. In a basic analog multimeter the current to deflect the coil and pointer is drawn from the circuit being measured; it is usually an advantage to ...
The thermo-galvanometer designed by Mr W. Duddell can be used for the measurement of extremely small currents to a high degree of accuracy. It has practically no self-induction or capacity and can therefore be used on a circuit of any frequency (even up to 120,000~ per sec.) and currents as small as twenty micro-amperes can be readily measured ...
A ballistic galvanometer is a type of sensitive galvanometer; commonly a mirror galvanometer. Unlike a current-measuring galvanometer, the moving part has a large moment of inertia, thus giving it a long oscillation period. It is really an integrator measuring the quantity of charge discharged through it. It can be either of the moving coil or ...
The segments are insulated and connected diagonally in pairs. The charged aluminum sector is attracted to one pair of segments and repelled from the other. The deflection is observed by a beam of light reflected from a small mirror attached to the sector, just as in a galvanometer. The engraving on the right shows a slightly different form of ...
A vibration galvanometer is a type of mirror galvanometer, usually with a coil suspended in the gap of a magnet or with a permanent magnet suspended in the field of an electromagnet. The natural oscillation frequency of the moving parts is carefully tuned to a specific frequency; commonly 50 or 60 Hz. Higher frequencies up to 1 kHz are possible.
When the coils are stationary, no current is induced. But when the small coil is moved in or out of the large coil (B), the magnetic flux through the large coil changes, inducing a current which is detected by the galvanometer (G). [1] A diagram of Faraday's iron ring apparatus.