Search results
Results from the WOW.Com Content Network
Menaechmus (Greek: Μέναιχμος, c. 380 – c. 320 BC) was an ancient Greek mathematician, geometer and philosopher [1] born in Alopeconnesus or Prokonnesos in the Thracian Chersonese, who was known for his friendship with the renowned philosopher Plato and for his apparent discovery of conic sections and his solution to the then-long-standing problem of doubling the cube using the ...
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
Conic optimization is a subfield of convex optimization that studies problems consisting of minimizing a convex function over the intersection of an affine subspace and a convex cone. The class of conic optimization problems includes some of the most well known classes of convex optimization problems, namely linear and semidefinite programming .
The problem of intersection of an ellipse/hyperbola/parabola with another conic section leads to a system of quadratic equations, which can be solved in special cases easily by elimination of one coordinate. Special properties of conic sections may be used to obtain a solution. In general the intersection points can be determined by solving the ...
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.
The Kepler problem and the simple harmonic oscillator problem are the two most fundamental problems in classical mechanics. They are the only two problems that have closed orbits for every possible set of initial conditions, i.e., return to their starting point with the same velocity (Bertrand's theorem). [1]: 92
In enumerative geometry, Steiner's conic problem is the problem of finding the number of smooth conics tangent to five given conics in the plane in general position. If the problem is considered in the complex projective plane CP 2 , the correct solution is 3264. [ 1 ]
The solution of the Kepler problem in a space of uniform positive curvature is a spherical conic, with a potential proportional to the cotangent of geodesic distance. [ 5 ] Because it preserves distances to a pair of specified points, the two-point equidistant projection maps the family of confocal conics on the sphere onto two families of ...