enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Steiner's conic problem - Wikipedia

    en.wikipedia.org/wiki/Steiner's_conic_problem

    In enumerative geometry, Steiner's conic problem is the problem of finding the number of smooth conics tangent to five given conics in the plane in general position. If the problem is considered in the complex projective plane CP 2 , the correct solution is 3264. [ 1 ]

  3. Menaechmus - Wikipedia

    en.wikipedia.org/wiki/Menaechmus

    Menaechmus (Greek: Μέναιχμος, c. 380 – c. 320 BC) was an ancient Greek mathematician, geometer and philosopher [1] born in Alopeconnesus or Prokonnesos in the Thracian Chersonese, who was known for his friendship with the renowned philosopher Plato and for his apparent discovery of conic sections and his solution to the then-long-standing problem of doubling the cube using the ...

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  5. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    Another classic problem in enumerative geometry, of similar vintage to conics, is the Problem of Apollonius: a circle that is tangent to three circles in general determines eight circles, as each of these is a quadratic condition and 2 3 = 8. As a question in real geometry, a full analysis involves many special cases, and the actual number of ...

  6. Category:Conic sections - Wikipedia

    en.wikipedia.org/wiki/Category:Conic_sections

    This page was last edited on 14 November 2020, at 20:25 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  7. Brianchon's theorem - Wikipedia

    en.wikipedia.org/wiki/Brianchon's_theorem

    Brianchon's theorem can be proved by the idea of radical axis or reciprocation. To prove it take an arbitrary length (MN) and carry it on the tangents starting from the contact points: PL = RJ = QH = MN etc. Draw circles a, b, c tangent to opposite sides of the hexagon at the created points (H,W), (J,V) and (L,Y) respectively.

  8. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  9. Linear system of conics - Wikipedia

    en.wikipedia.org/wiki/Linear_system_of_conics

    In algebraic geometry, the conic sections in the projective plane form a linear system of dimension five, as one sees by counting the constants in the degree two equations. The condition to pass through a given point P imposes a single linear condition, so that conics C through P form a linear system of dimension 4.