Search results
Results from the WOW.Com Content Network
Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter). [2] [3] Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures.
Nanomedicine is a large industry, with nanomedicine sales reaching $6.8 billion in 2004. With over 200 companies and 38 products worldwide, a minimum of $3.8 billion in nanotechnology R&D is being invested every year. [10] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.
It makes use of natural or biomimetic systems or elements for unique nanoscale structures and various applications that may not be directionally associated with biology rather than mostly biological applications. In contrast, nanobiotechnology uses biotechnology miniaturized to nanometer size or incorporates nanomolecules into biological systems.
Nanocrystals used for drug delivery can increase saturation solubility and dispersion velocity. Generally, saturation solubility is thought to be a function of temperature, but it is also based on other factors, such as crystalline structure and particle size, in regards to nanocrystals. The Ostwald-Freundlich equation below shows this ...
Despite these benefits, there are also health risks when it comes to human exposure to the nano material. Studies have shown that dangerous nano-particles can build up in the body after prolonged exposure. This is caused by a very complicated interaction between nano-particles and parts of the body's systems. [9]
Nanotubes may be used in body armor for future soldiers. This type of armor would be very strong and highly effective at shielding soldiers’ bodies from projectiles and electromagnetic radiation. It is also possible that the nanotubes in the armor could play a role in keeping an eye on soldiers’ conditions. [8]
Carbon nanotubes can be metallic or semiconducting depending on their structure. This is due to the symmetry and unique electronic structure of graphene. For a given (n,m) nanotube, if n = m, the nanotube is metallic; if n − m is a multiple of 3, then the nanotube is semiconducting with a very small band gap, otherwise the nanotube is a ...
Targeted drug delivery can be used to treat many diseases, such as the cardiovascular diseases and diabetes. However, the most important application of targeted drug delivery is to treat cancerous tumors. In doing so, the passive method of targeting tumors takes advantage of the enhanced permeability and retention (EPR) effect. This is a ...