Search results
Results from the WOW.Com Content Network
The brain and the neural network should be considered as an integrated and self-contained firmware system that includes hardware (organs), software (programs), memory (short term and long term), database (centralized and distributed), and a complex network of active elements (such as neurons, synapses, and tissues) and passive elements (such as ...
Because all brain areas are bidirectionally coupled, these connections between brain areas form feedback loops. Positive feedback loops tend to cause oscillatory activity where frequency is inversely related to the delay time. An example of such a feedback loop is the connections between the thalamus and cortex – the thalamocortical radiations.
Dopamine receptor subtypes, D1 and D2 have been shown to have complementary functions in the mesocorticolimbic projection, facilitating learning in response to both positive and negative feedback. [14] Both pathways of the mesocorticolimbic system are associated with ADHD, schizophrenia and addiction. [15] [16] [17] [18]
Positive feedback reinforces and negative feedback moderates the original process. Positive and negative in this sense refer to loop gains greater than or less than zero, and do not imply any value judgements as to the desirability of the outcomes or effects. [7] A key feature of positive feedback is thus that small disturbances get bigger.
Neural top–down control of physiology concerns the direct regulation by the brain of physiological functions (in addition to smooth muscle and glandular ones). Cellular functions include the immune system’s production of T-lymphocytes and antibodies, and nonimmune related homeostatic functions such as liver gluconeogenesis, sodium reabsorption, osmoregulation, and brown adipose tissue ...
The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals.It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for special senses such as vision, hearing and olfaction.
Neuroendocrinology is the branch of biology (specifically of physiology) which studies the interaction between the nervous system and the endocrine system; i.e. how the brain regulates the hormonal activity in the body. [1]
The human brain is the central organ of the nervous system, and with the spinal cord, comprises the central nervous system. It consists of the cerebrum, the brainstem and the cerebellum. The brain controls most of the activities of the body, processing, integrating, and coordinating the information it receives from the sensory nervous system ...