enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative.

  3. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]

  4. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3] The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6

  5. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    An infinite difference is a further generalization, where the finite sum above is replaced by an infinite series. Another way of generalization is making coefficients μ k depend on point x: μ k = μ k (x), thus considering weighted finite difference. Also one may make the step h depend on point x: h = h(x).

  6. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !

  7. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The ratio in the definition of the derivative is the slope of the line through two points on the graph of the function ⁠ ⁠, specifically the points (, ()) and (+, (+)). As h {\displaystyle h} is made smaller, these points grow closer together, and the slope of this line approaches the limiting value, the slope of the tangent to the graph of ...

  8. Strategist details what to look for in ETFs going into 2025

    www.aol.com/finance/strategist-details-look-etfs...

    Listen and subscribe to Stocks in Translation on Apple Podcasts, Spotify, or wherever you find your favorite podcasts.. Exchange-traded funds (ETFs) are often an essential part of a diversified ...

  9. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    The latter is the difference quotient for g at a, and because g is differentiable at a by assumption, its limit as x tends to a exists and equals g′(a). As for Q(g(x)), notice that Q is defined wherever f is. Furthermore, f is differentiable at g(a) by assumption, so Q is continuous at g(a), by definition of the derivative.