enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]

  3. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    In the liver, muscles, and the kidney, this process occurs to provide glucose when necessary. [12] A single glucose molecule is cleaved from a branch of glycogen, and is transformed into glucose-1-phosphate during this process. [1] This molecule can then be converted to glucose-6-phosphate, an intermediate in the glycolysis pathway. [1]

  4. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    Glycolysis results in the breakdown of glucose, but several reactions in the glycolysis pathway are reversible and participate in the re-synthesis of glucose (gluconeogenesis). [9] Glycolysis was the first metabolic pathway discovered: As glucose enters a cell, it is immediately phosphorylated by ATP to glucose 6-phosphate in the irreversible ...

  5. Adenosine diphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_diphosphate

    The net reaction for the overall process of glycolysis is: [6] Glucose + 2 NAD+ + 2 P i + 2 ADP → 2 pyruvate + 2 ATP + 2 NADH + 2 H 2 O. Steps 1 and 3 require the input of energy derived from the hydrolysis of ATP to ADP and P i (inorganic phosphate), whereas steps 7 and 10 require the input of ADP, each yielding ATP. [7]

  6. Template:Glycolysis summary - Wikipedia

    en.wikipedia.org/wiki/Template:Glycolysis_summary

    "The metabolic pathway of glycolysis converts glucose to pyruvate via a series of intermediate metabolites. Each chemical modification (red box) is performed by a different enzyme. Steps 1 and 3 consume ATP (blue) and steps 7 and 10 produce ATP (yellow). Since steps 6-10 occur twice per glucose molecule, this leads to a net production of energy."

  7. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    The location where glycolysis, aerobic or anaerobic, occurs is in the cytosol of the cell. In glycolysis, a six-carbon glucose molecule is split into two three-carbon molecules called pyruvate. These carbon molecules are oxidized into NADH and ATP. For the glucose molecule to oxidize into pyruvate, an input of ATP molecules is required.

  8. Pyruvic acid - Wikipedia

    en.wikipedia.org/wiki/Pyruvic_acid

    Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or converted to fatty acids through a reaction with acetyl-CoA. [3] It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation .

  9. Malate–aspartate shuttle - Wikipedia

    en.wikipedia.org/wiki/Malate–aspartate_shuttle

    In this process, two electrons generated from NADH, and an accompanying H +, are attached to oxaloacetate to form malate. Once malate is formed, the first antiporter (malate-alpha-ketoglutarate) imports the malate from the cytosol into the mitochondrial matrix and also exports alpha-ketoglutarate from the matrix into the cytosol simultaneously.