Ad
related to: shaft stiffness chart2ndswing.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The stiffness, , of a body is a measure of the resistance offered by an elastic body to deformation. For an elastic body with a single degree of freedom (DOF) (for example, stretching or compression of a rod), the stiffness is defined as k = F δ {\displaystyle k={\frac {F}{\delta }}} where,
When an element of mass is offset from the axis of rotation, centrifugal force will tend to pull the mass outward. The elastic properties of the shaft will act to restore the “straightness”. If the frequency of rotation is equal to one of the resonant frequencies of the shaft, whirling will occur. In order to save the machine from failure ...
The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.
Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression.. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.
Stiffness of the shaft and its support; Total mass of shaft and attached parts; Unbalance of the mass with respect to the axis of rotation; The amount of damping in the system; In general, it is necessary to calculate the critical speed of a rotating shaft, such as a fan shaft, in order to avoid issues with noise and vibration.
Simply put, the polar moment of area is a shaft or beam's resistance to being distorted by torsion, as a function of its shape. The rigidity comes from the object's cross-sectional area only, and does not depend on its material composition or shear modulus. The greater the magnitude of the second polar moment of area, the greater the torsional ...
The flexural rigidity (stiffness) of the beam is therefore related to both , a material property, and , the physical geometry of the beam. If the material exhibits Isotropic behavior then the Flexural Modulus is equal to the Modulus of Elasticity (Young's Modulus).
Once the state of stress and strain within the member is known, the strength (load carrying capacity) of that member, its deformations (stiffness qualities), and its stability (ability to maintain its original configuration) can be calculated.
Ad
related to: shaft stiffness chart2ndswing.com has been visited by 10K+ users in the past month