enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  3. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm, low-rank approximation of the data matrix. [1]

  4. Functional data analysis - Wikipedia

    en.wikipedia.org/wiki/Functional_data_analysis

    Functional data analysis (FDA) is a branch of statistics that analyses data providing information about curves, surfaces or anything else varying over a continuum. In its most general form, under an FDA framework, each sample element of functional data is considered to be a random function.

  5. Group method of data handling - Wikipedia

    en.wikipedia.org/wiki/Group_method_of_data_handling

    Like linear regression, which fits a linear equation over data, GMDH fits arbitrarily high orders of polynomial equations over data. [6] [7] To choose between models, two or more subsets of a data sample are used, similar to the train-validation-test split.

  6. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n × 1 vector of the ...

  7. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    An important difference between lasso regression and Tikhonov regularization is that lasso regression forces more entries of to actually equal 0 than would otherwise. In contrast, while Tikhonov regularization forces entries of w {\displaystyle w} to be small, it does not force more of them to be 0 than would be otherwise.

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Another example is the function f(x) = |x| on the interval [−1, 1], for which the interpolating polynomials do not even converge pointwise except at the three points x = ±1, 0. [ 13 ] One might think that better convergence properties may be obtained by choosing different interpolation nodes.

  9. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Optimal instruments regression is an extension of classical IV regression to the situation where E[ε i | z i] = 0. Total least squares (TLS) [6] is an approach to least squares estimation of the linear regression model that treats the covariates and response variable in a more geometrically symmetric manner than OLS. It is one approach to ...