Search results
Results from the WOW.Com Content Network
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
This is commonly seen in real logic diagrams – thus the reader must not get into the habit of associating the shapes exclusively as OR or AND shapes, but also take into account the bubbles at both inputs and outputs in order to determine the "true" logic function indicated. A De Morgan symbol can show more clearly a gate's primary logical ...
De Morgan's laws: In propositional logic and Boolean algebra, De Morgan's laws, [15] [16] [17] also known as De Morgan's theorem, [18] are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician.
Modern philosophers reject quantum logic as a basis for reasoning, because it lacks a material conditional; a common alternative is the system of linear logic, of which quantum logic is a fragment. Mathematically, quantum logic is formulated by weakening the distributive law for a Boolean algebra, resulting in an orthocomplemented lattice .
De Morgan algebras are important for the study of the mathematical aspects of fuzzy logic. The standard fuzzy algebra F = ([0, 1], max( x , y ), min( x , y ), 0, 1, 1 − x ) is an example of a De Morgan algebra where the laws of excluded middle and noncontradiction do not hold.
Common quantum logic gates by name (including abbreviation), circuit form(s) and the corresponding unitary matrices. In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits.
This page was last edited on 31 December 2018, at 21:47 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Augustus De Morgan (27 June 1806 – 18 March 1871) was a British mathematician and logician.He is best known for De Morgan's laws, relating logical conjunction, disjunction, and negation, and for coining the term "mathematical induction", the underlying principles of which he formalized. [1]