Search results
Results from the WOW.Com Content Network
If we scale phase permeability w.r.t. absolute water permeability (i.e. =), we get an endpoint parameter for both oil and water relative permeability. If we scale phase permeability w.r.t. oil permeability with irreducible water saturation present, K r o w {\displaystyle K_{\mathit {row}}} endpoint is one, and we are left with only the K r w ...
The concept of permeability is of importance in determining the flow characteristics of hydrocarbons in oil and gas reservoirs, [4] and of groundwater in aquifers. [5]For a rock to be considered as an exploitable hydrocarbon reservoir without stimulation, its permeability must be greater than approximately 100 md (depending on the nature of the hydrocarbon – gas reservoirs with lower ...
In physics and engineering, permeation (also called imbuing) is the penetration of a permeate (a fluid such as a liquid, gas, or vapor) through a solid.It is directly related to the concentration gradient of the permeate, a material's intrinsic permeability, and the materials' mass diffusivity. [1]
Craig [1] proposed three rules of thumb for interpretation of wettability from relative permeability curves. These rules are based on the value of interstitial water saturation, the water saturation at the crossover point of relative permeability curves (i.e., where relative permeabilities are equal to each other), and the normalized water permeability at residual oil saturation (i.e ...
In fluid mechanics, fluid flow through porous media is the manner in which fluids behave when flowing through a porous medium, for example sponge or wood, or when filtering water using sand or another porous material. As commonly observed, some fluid flows through the media while some mass of the fluid is stored in the pores present in the media.
magnetostatics (ratio of the permeability of a specific medium to free space) Relative permittivity = electrostatics (ratio of capacitance of test capacitor with dielectric material versus vacuum) Specific gravity: SG (same as Relative density) Stefan number: Ste
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.
Correlating relative permeability. The simulation model computes the saturation change of three phases (oil, water and gas) and the pressure of each phase in each cell at each time step. As a result of declining pressure as in a reservoir depletion study, gas will be liberated from the oil.