enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    For example, the exponential function is the function which is equal to its own derivative everywhere, and assumes the value 1 at the origin. However, one may equally well define an analytic function by its Taylor series. Taylor series are used to define functions and "operators" in diverse areas of mathematics. In particular, this is true in ...

  4. First-order second-moment method - Wikipedia

    en.wikipedia.org/wiki/First-order_second-moment...

    For the second-order approximations of the third central moment as well as for the derivation of all higher-order approximations see Appendix D of Ref. [3] Taking into account the quadratic terms of the Taylor series and the third moments of the input variables is referred to as second-order third-moment method. [4]

  5. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    4. The solution is to expand the function z in a second-order Taylor series; the expansion is done around the mean values of the several variables x. (Usually the expansion is done to first order; the second-order terms are needed to find the bias in the mean. Those second-order terms are usually dropped when finding the variance; see below). 5.

  6. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [ 3 ] Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis .

  7. Sine-Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Sine-Gordon_equation

    The sine-Gordon equation is a second-order nonlinear partial differential equation for a function dependent on two variables typically denoted and , involving the wave operator and the sine of . It was originally introduced by Edmond Bour ( 1862 ) in the course of study of surfaces of constant negative curvature as the Gauss–Codazzi equation ...

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.