Search results
Results from the WOW.Com Content Network
The kinetic theory of gases allows accurate calculation of the temperature-variation of gaseous viscosity. The theoretical basis of the kinetic theory is given by the Boltzmann equation and Chapman–Enskog theory, which allow accurate statistical modeling of molecular trajectories.
The three viscosity equations now coalesce to a single viscosity equation = = because a nondimensional scaling is used for the entire viscosity equation. The standard nondimensionality reasoning goes like this: Creating nondimensional variables (with subscript D) by scaling gives
The defining equations for viscosity are not fundamental laws of nature, so their usefulness, as well as methods for measuring or calculating the viscosity, must be established using separate means. A potential issue is that viscosity depends, in principle, on the full microscopic state of the fluid, which encompasses the positions and momenta ...
The viscosity equation further presupposes that there is only one type of gas molecules, and that the gas molecules are perfect elastic and hard core particles of spherical shape. This assumption of elastic, hard core spherical molecules, like billiard balls, implies that the collision cross section of one molecule can be estimated by σ = π ...
A gas is said to be in local equilibrium if it satisfies this equation. [4] The assumption of local equilibrium leads directly to the Euler equations , which describe fluids without dissipation, i.e. with thermal conductivity and viscosity equal to 0 {\displaystyle 0} .
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The Vogel–Fulcher–Tammann equation, also known as Vogel–Fulcher–Tammann–Hesse equation or Vogel–Fulcher equation (abbreviated: VFT equation), is used to describe the viscosity of liquids as a function of temperature, and especially its strongly temperature dependent variation in the supercooled regime, upon approaching the glass transition.
η is the viscosity of the solution (at a fixed temperature and pressure), η 0 is the viscosity of the solvent at the same temperature and pressure, A is a coefficient that describes the impact of charge–charge interactions on the viscosity of a solution (it is usually positive) and can be calculated from Debye–Hückel theory,