Search results
Results from the WOW.Com Content Network
Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³ STP /min. Another expression of it would be Nml/min. Another expression of it would be Nml/min.
SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
If the system were moving a gas at exactly the "standard" condition, then ACFM would equal SCFM. This usually is not the case as the most important change between these two definitions is the pressure. To move a gas, a positive pressure or a vacuum must be created. When positive pressure is applied to a standard cubic foot of gas, it is compressed.
q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...
The average water pressure acting against a dam depends on the average depth of the water and not on the volume of water held back. For example, a wide but shallow lake with a depth of 3 m (10 ft) exerts only half the average pressure that a small 6 m (20 ft) deep pond does.