Search results
Results from the WOW.Com Content Network
Both the torque and force exerted on a magnet by an external magnetic field are proportional to that magnet's magnetic moment. The magnetic moment is a vector: it has both a magnitude and direction. The direction of the magnetic moment points from the south to north pole of a magnet (inside the magnet).
If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid, size of the body, expressed in terms of its wetted area A, and; drag force F d.
The pound-force has a metric counterpart, less commonly used than the newton: the kilogram-force (kgf) (sometimes kilopond), is the force exerted by standard gravity on one kilogram of mass. The kilogram-force leads to an alternate, but rarely used unit of mass: the metric slug (sometimes mug or hyl) is that mass that accelerates at 1 m·s −2 ...
The force acting on a point charge due to a system of point charges is simply the vector addition of the individual forces acting alone on that point charge due to each one of the charges. The resulting force vector is parallel to the electric field vector at that point, with that point charge removed.
If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...
The backward acting force of pressure exerted on the front surface is thus larger than the force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief."
For example, a force exerted upwards, like lifting an object, creates positive work done on that object. [2] Exertion often results in force generated, a contributing dynamic of general motion. [1] In mechanics it describes the use of force against a body in the direction of its motion (see vector). [citation needed]
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.