enow.com Web Search

  1. Ad

    related to: define poset with example pdf form free template

Search results

  1. Results from the WOW.Com Content Network
  2. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...

  3. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  4. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    A Scott domain is a partially ordered set which is a bounded complete algebraic cpo. Scott open. See Scott topology. Scott topology. For a poset P, a subset O is Scott-open if it is an upper set and all directed sets D that have a supremum in O have non-empty intersection with O. The set of all Scott-open sets forms a topology, the Scott topology.

  5. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    A power set, partially ordered by inclusion, with rank defined as number of elements, forms a graded poset. In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties:

  6. Differential poset - Wikipedia

    en.wikipedia.org/wiki/Differential_poset

    In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.

  7. Order dimension - Wikipedia

    en.wikipedia.org/wiki/Order_dimension

    Thus, an equivalent definition of the dimension of a poset P is "the least cardinality of a realizer of P." It can be shown that any nonempty family R of linear extensions is a realizer of a finite partially ordered set P if and only if, for every critical pair ( x , y ) of P , y < i x for some order < i in R .

  8. Ascending chain condition - Wikipedia

    en.wikipedia.org/wiki/Ascending_chain_condition

    The conditions themselves can be stated in an abstract form, so that they make sense for any partially ordered set. This point of view is useful in abstract algebraic dimension theory due to Gabriel and Rentschler.

  9. Residuated mapping - Wikipedia

    en.wikipedia.org/wiki/Residuated_mapping

    If B is a poset, the set of functions A → B can be ordered by the pointwise order f ≤ g ↔ (∀x ∈ A) f(x) ≤ g(x).. It can be shown that a monotone function f is residuated if and only if there exists a (necessarily unique) monotone function f +: B → A such that f o f + ≤ id B and f + o f ≥ id A, where id is the identity function.

  1. Ad

    related to: define poset with example pdf form free template