enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersection number - Wikipedia

    en.wikipedia.org/wiki/Intersection_number

    Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:

  3. Enumerative geometry - Wikipedia

    en.wikipedia.org/wiki/Enumerative_geometry

    called 'double lines'. This is because a double line intersects every line in the plane, since lines in the projective plane intersect, with multiplicity two because it is doubled, and thus satisfies the same intersection condition (intersection of multiplicity two) as a nondegenerate conic that is tangent to the line.

  4. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    In order to find the intersection point of a set of lines, we calculate the point with minimum distance to them. Each line is defined by an origin a i and a unit direction vector n̂ i . The square of the distance from a point p to one of the lines is given from Pythagoras:

  5. Bentley–Ottmann algorithm - Wikipedia

    en.wikipedia.org/wiki/Bentley–Ottmann_algorithm

    The Bentley–Ottmann algorithm processes a sequence of + events, where denotes the number of input line segments and denotes the number of crossings. Each event is processed by a constant number of operations in the binary search tree and the event queue, and (because it contains only segment endpoints and crossings between adjacent segments ...

  6. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    For stating the general result, one has to recall that the intersection points form an algebraic set, and that there is a finite number of intersection points if and only if all component of the intersection have a zero dimension (an algebraic set of positive dimension has an infinity of points over an algebraically closed field).

  7. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...

  8. Multiple line segment intersection - Wikipedia

    en.wikipedia.org/wiki/Multiple_line_segment...

    The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.

  9. Möller–Trumbore intersection algorithm - Wikipedia

    en.wikipedia.org/wiki/Möller–Trumbore...

    The Möller–Trumbore ray-triangle intersection algorithm, named after its inventors Tomas Möller and Ben Trumbore, is a fast method for calculating the intersection of a ray and a triangle in three dimensions without needing precomputation of the plane equation of the plane containing the triangle. [1]