Search results
Results from the WOW.Com Content Network
In computer programming, an anonymous function (function literal, expression or block) is a function definition that is not bound to an identifier.Anonymous functions are often arguments being passed to higher-order functions or used for constructing the result of a higher-order function that needs to return a function. [1]
Anonymous recursion is primarily of use in allowing recursion for anonymous functions, particularly when they form closures or are used as callbacks, to avoid having to bind the name of the function. Anonymous recursion primarily consists of calling "the current function", which results in direct recursion.
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
Here is an example of a recursive function in C/C++ to find Fibonacci numbers: ... Branch table B ERROR return code =08 Unexpected condition } ... Lambda function ...
This property is inherited from lambda calculus, where multi-argument functions are usually represented in curried form. Currying is related to, but not the same as partial application . [ 1 ] [ 2 ] In practice, the programming technique of closures can be used to perform partial application and a kind of currying, by hiding arguments in an ...
The generalized curry function is given an uncurried function f and its arity (say, 3), and it returns the value of (lambda (v1) (lambda (v2) (lambda (v3) (f v1 v2 v3)))). This example is due to Olivier Danvy and was worked out in the mid-1980s. [13] Here is a unit-test function to illustrate what the generalized curry function is expected to do:
In this case particular lambda terms (which define functions) are considered as values. "Running" (beta reducing) the fixed-point combinator on the encoding gives a lambda term for the result which may then be interpreted as fixed-point value. Alternately, a function may be considered as a lambda term defined purely in lambda calculus.
In the Lambda lifting section, a meta function for first lifting and then converting the resulting lambda expression into recursive equation was described. The Lambda Drop meta function performs the reverse by first converting recursive equations to lambda abstractions, and then dropping the resulting lambda expression, into the smallest scope ...