Search results
Results from the WOW.Com Content Network
These proportionalities may be expressed by the formula: where g is the surface gravity of an object, expressed as a multiple of the Earth's, m is its mass, expressed as a multiple of the Earth's mass (5.976 × 10 24 kg) and r its radius, expressed as a multiple of the Earth's (mean) radius (6,371 km). [9]
An Earth mass (denoted as M 🜨, M ♁ or M E, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is M 🜨 = 5.9722 × 10 24 kg, with a relative uncertainty of 10 −4. [2] It is equivalent to an average density of 5515 kg/m 3.
The surface of a sphere can be completely described by two dimensions, since no matter how rough the surface may appear to be, it is still only a surface, which is the two-dimensional outside border of a volume. Even the surface of the Earth, which is fractal in complexity, is still only a two-dimensional boundary along the outside of a volume. [3]
The density at the center is the same as in the PREM, but the surface density is chosen so that the mass of the sphere equals the mass of the real Earth. See also: Shell theorem An approximate value for gravity at a distance r from the center of the Earth can be obtained by assuming that the Earth's density is spherically symmetric.
D 50: Mass-median-diameter (MMD). The log-normal distribution mass median diameter. The MMD is considered to be the average particle diameter by mass. σ g: Geometric standard deviation. This value is determined mathematically by the equation: σ g = D 84.13 /D 50 = D 50 /D 15.87. The value of σ g determines the slope of the least-squares ...
These equations, together with the geodesic equation, [8] which dictates how freely falling matter moves through spacetime, form the core of the mathematical formulation of general relativity. The EFE is a tensor equation relating a set of symmetric 4 × 4 tensors. Each tensor has 10 independent components.
For example, w = 0 describes a matter-dominated universe, where the pressure is negligible with respect to the mass density. From the generic solution one easily sees that in a matter-dominated universe the scale factor goes as a ( t ) ∝ t 2 / 3 {\displaystyle a(t)\propto t^{2/3}} matter-dominated Another important example is the case of a ...
For such two- or restricted three-body problems as its simplest examples—e.g., one more massive primary astrophysical body, mass of m1, and a less massive secondary body, mass of m2—the concept of a Hill radius or sphere is of the approximate limit to the secondary mass's "gravitational dominance", [6] a limit defined by "the extent" of its ...