Search results
Results from the WOW.Com Content Network
The term human blood group systems is defined by the International Society of Blood Transfusion (ISBT) as systems in the human species where cell-surface antigens—in particular, those on blood cells—are "controlled at a single gene locus or by two or more very closely linked homologous genes with little or no observable recombination between them", [1] and include the common ABO and Rh ...
A complete blood type would describe each of the 45 blood groups, and an individual's blood type is one of many possible combinations of blood-group antigens. [3] Almost always, an individual has the same blood group for life, but very rarely an individual's blood type changes through addition or suppression of an antigen in infection, malignancy, or autoimmune disease.
The A blood type contains about 20 subgroups, of which A1 and A2 are the most common (over 99%). A1 makes up about 80% of all A-type blood, with A2 making up almost all of the rest. [38] These two subgroups are not always interchangeable as far as transfusion is concerned, as some A2 individuals produce antibodies against the A1 antigen.
Blood type (also called a blood group) is a classification of blood, based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrates, glycoproteins, or glycolipids, depending on the blood group system.
Two complex chimpanzee blood group systems, V-A-B-D and R-C-E-F systems, proved to be counterparts of the human MNS and Rh blood group systems, respectively. Two blood group systems have been defined in Old World monkeys: the Drh system of macaques and the Bp system of baboons, both linked by at least one species shared by either of the blood group systems.
The S antigen is relatively common (~55% of the population) and the s antigen is very common (~89% of the population). Anti-S and anti-s can cause hemolytic transfusion reactions and hemolytic disease of the newborn.The U antigen is a high incidence antigen, occurring in more than 99.9% of the population.
Blood compatibility testing is routinely performed before a blood transfusion.The full compatibility testing process involves ABO and RhD (Rh factor) typing; screening for antibodies against other blood group systems; and crossmatching, which involves testing the recipient's blood plasma against the donor's red blood cells as a final check for incompatibility.
Depending upon a person's ABO blood type, the H antigen is converted into either the A antigen, B antigen, or both. If a person has group O blood, the H antigen remains unmodified. Therefore, the H antigen is present more in blood type O and less in blood type AB. Hh antigen system - diagram showing the molecular structure of the ABO(H) antigen ...