Search results
Results from the WOW.Com Content Network
In fluid mechanics, pipe flow is a type of fluid flow within a closed conduit, such as a pipe, duct or tube. It is also called as Internal flow. [1] The other type of flow within a conduit is open channel flow. These two types of flow are similar in many ways, but differ in one important aspect.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
Ducts for air pollution control in a 17000 standard cubic feet per minute regenerative thermal oxidizer (RTO). A round galvanized steel duct connecting to a typical diffuser Fire-resistance rated mechanical shaft with HVAC sheet metal ducting and copper piping, as well as "HOW" (Head-Of-Wall) joint between top of concrete block wall and underside of concrete slab, firestopped with ceramic ...
For a flow with an upstream Mach number greater than 1.0 in a sufficiently long duct, deceleration occurs and the flow can become choked. On the other hand, for a flow with an upstream Mach number less than 1.0, acceleration occurs and the flow can become choked in a sufficiently long duct. It can be shown that for flow of calorically perfect ...
Duct dead loads: are often simplified (in Cement plant usage) by using duct plate weight, multiplied by 1.15 as a stiffener allowance, as duct stiffeners usually weigh less than 15% times the duct plate weight. Duct stiffener allowance for rectangular power plants ductwork may be 50% to 100% of the duct plate weight.
A supersonic diffuser is a duct that decreases in area in the direction of flow which causes the fluid temperature, pressure, and density to increase, and velocity to decrease. These changes occur because the fluid is compressible. Shock waves may also play an important role in a supersonic diffuser.
Therefore, the Rayleigh flow model is critical for an initial design of the duct geometry and combustion temperature for an engine. The Rayleigh flow model is also used extensively with the Fanno flow model. These two models intersect at points on the enthalpy-entropy and Mach number-entropy diagrams, which is meaningful for many applications.
For the limiting case of a very wide duct, i.e. a slot of width b, where b ≫ a, and a is the water depth, then D H = 4a. For a fully filled duct or pipe whose cross-section is a convex regular polygon , the hydraulic diameter is equivalent to the diameter D {\displaystyle D} of a circle inscribed within the wetted perimeter .