Search results
Results from the WOW.Com Content Network
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
In bypass transition flow, the pre-transitional flow structures are different from those of very low turbulence free-stream flow. Through various laboratory experiments and computational studies, it has been observed that low frequency streaky flow structures are present in the laminar boundary layers.
In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition.
It is useful for solving the heat transfer problem of turbulent boundary layer flows. The simplest model for Pr t is the Reynolds analogy , which yields a turbulent Prandtl number of 1. From experimental data, Pr t has an average value of 0.85, but ranges from 0.7 to 0.9 depending on the Prandtl number of the fluid in question.
The basis of the Falkner-Skan approach are the Prandtl boundary layer equations. Ludwig Prandtl [2] simplified the equations for fluid flowing along a wall (wedge) by dividing the flow into two areas: one close to the wall dominated by viscosity, and one outside this near-wall boundary layer region where viscosity can be neglected without significant effects on the solution.
The Stanton number arises in the consideration of the geometric similarity of the momentum boundary layer and the thermal boundary layer, where it can be used to express a relationship between the shear force at the wall (due to viscous drag) and the total heat transfer at the wall (due to thermal diffusivity).
This observation is also valid for the case of a turbulent boundary layer. Outside the Stokes boundary layer – which is often the bulk of the fluid volume – the vorticity oscillations may be neglected. To good approximation, the flow velocity oscillations are irrotational outside the boundary layer, and potential flow theory can be applied ...
The Reynolds Analogy is popularly known to relate turbulent momentum and heat transfer. [1] That is because in a turbulent flow (in a pipe or in a boundary layer) the transport of momentum and the transport of heat largely depends on the same turbulent eddies: the velocity and the temperature profiles have the same shape.