enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Stretched exponential function - Wikipedia

    en.wikipedia.org/wiki/Stretched_exponential_function

    With a stretching exponent β between 0 and 1, the graph of log f versus t is characteristically stretched, hence the name of the function. The compressed exponential function (with β > 1) has less practical importance, with the notable exception of β = 2, which gives the normal distribution.

  4. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A stretch in the xy-plane is a linear transformation which enlarges all distances in a particular direction by a constant factor but does not affect distances in the perpendicular direction. We only consider stretches along the x-axis and y-axis. A stretch along the x-axis has the form x' = kx; y' = y for some positive constant k.

  5. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:

  6. Generalised logistic function - Wikipedia

    en.wikipedia.org/wiki/Generalised_logistic_function

    A particular case of the generalised logistic function is: = (+ ()) /which is the solution of the Richards's differential equation (RDE): ′ = (()) with initial condition

  7. Spaghettification - Wikipedia

    en.wikipedia.org/wiki/Spaghettification

    In astrophysics, spaghettification (sometimes referred to as the noodle effect) [1] is the vertical stretching and horizontal compression of objects into long thin shapes (rather like spaghetti) in a very strong, non-homogeneous gravitational field. It is caused by extreme tidal forces.

  8. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    Under such a condition, the above equation can obtain the direct-related stiffness for the degree of unconstrained freedom. The ratios between the reaction forces (or moments) and the produced deflection are the coupling stiffnesses. The elasticity tensor is a generalization that describes all possible stretch and shear parameters.

  9. Stretch factor - Wikipedia

    en.wikipedia.org/wiki/Stretch_factor

    The stretch factor is important in the theory of geometric spanners, weighted graphs that approximate the Euclidean distances between a set of points in the Euclidean plane. In this case, the embedded metric S is a finite metric space, whose distances are shortest path lengths in a graph, and the metric T into which S is embedded is the ...