Search results
Results from the WOW.Com Content Network
Kinematic viscosity has units of square feet per second (ft 2 /s) in both the BG and EE systems. Nonstandard units include the reyn (lbf·s/in 2), a British unit of dynamic viscosity. [30] In the automotive industry the viscosity index is used to describe the change of viscosity with temperature.
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The poise is often used with the metric prefix centi-because the viscosity of water at 20 °C (standard conditions for temperature and pressure) is almost exactly 1 centipoise. [3] A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 −3 Pa⋅s = 1 mPa⋅s). [4] The CGS symbol for the centipoise ...
The poiseuille (symbol Pl) has been proposed as a derived SI unit of dynamic viscosity, [1] named after the French physicist Jean Léonard Marie Poiseuille (1797–1869).. In practice the unit has never been widely accepted and most international standards bodies do not include the poiseuille in their list of units.
By definition, 1 reyn = 1 lb f s in −2. It follows that the relation between the reyn and the poise is approximately 1 reyn = 6.89476 × 10 4 P. In SI units, viscosity is expressed in newton-seconds per square meter, or equivalently in pascal-seconds. The conversion factor between the two is approximately 1 reyn = 6890 Pa s.
where (in SI units): is the frictional force – known as Stokes' drag – acting on the interface between the fluid and the particle (newtons, kg m s −2); μ (some authors use the symbol η) is the dynamic viscosity (Pascal-seconds, kg m −1 s −1); R is the radius of the spherical object (meters);
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.