Search results
Results from the WOW.Com Content Network
This also means the constraint forces do not add to the instantaneous power.) The time integral of this scalar equation yields work from the instantaneous power, and kinetic energy from the scalar product of acceleration with velocity. The fact that the work–energy principle eliminates the constraint forces underlies Lagrangian mechanics. [28]
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges .
Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U: Wherever the force is zero, its potential energy is defined to be zero as well. Whenever the force does work, potential energy is lost.
If the force F is derivable from a potential (conservative), then applying the gradient theorem (and remembering that force is the negative of the gradient of the potential energy) yields: = (), where A and B are the beginning and end of the path along which the work was done. The power at any point along the curve C is the time derivative: = = =.
The British imperial units and U.S. customary units for both energy and work include the foot-pound force (1.3558 J), the British thermal unit (BTU) which has various values in the region of 1055 J, the horsepower-hour (2.6845 MJ), and the gasoline gallon equivalent (about 120 MJ). Log-base-10 of the ratios between various measures of energy
Components of mechanical systems store elastic potential energy if they are deformed when forces are applied to the system. Energy is transferred to an object by work when an external force displaces or deforms the object. The quantity of energy transferred is the vector dot product of the force and the displacement of the object. As forces are ...
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.