enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The cross differentiated NavierStokes equation becomes two 0 = 0 equations and one meaningful equation. The remaining component ψ 3 = ψ is called the stream function. The equation for ψ can simplify since a variety of quantities will now equal zero, for example:

  4. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    The NavierStokes equations govern the velocity and pressure of a fluid flow. In a turbulent flow, each of these quantities may be decomposed into a mean part and a fluctuating part. Averaging the equations gives the Reynolds-averaged NavierStokes (RANS) equations, which govern the mean flow.

  5. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_existence...

    In mathematics, the NavierStokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  6. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state NavierStokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the NavierStokes equations reduces it to the momentum balance in the Stokes equations: [1]

  7. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    In computational fluid dynamics (CFD), the SIMPLE algorithm is a widely used numerical procedure to solve the NavierStokes equations. SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early ...

  8. Astrophysical fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Astrophysical_fluid_dynamics

    Many regular fluid dynamics equations are used in astrophysical fluid dynamics. Some of these equations are: [2] Continuity equations; The NavierStokes equations; Euler's equations; Conservation of mass. The continuity equation is an extension of conservation of mass to fluid flow.

  9. Burgers vortex - Wikipedia

    en.wikipedia.org/wiki/Burgers_vortex

    Burgers vortex layer or Burgers vortex sheet is a strained shear layer, which is a two-dimensional analogue of Burgers vortex. This is also an exact solution of the NavierStokes equations, first described by Albert A. Townsend in 1951. [8] The velocity field (,,) expressed in the Cartesian coordinates are