enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wow and flutter measurement - Wikipedia

    en.wikipedia.org/wiki/Wow_and_flutter_measurement

    Measurement is usually made on a 3.15 kHz (or sometimes 3 kHz) tone, a frequency chosen because it is high enough to give good resolution, but low enough not to be affected by drop-outs and high-frequency losses. Ideally, flutter should be measured using a pre-recorded tone free from flutter.

  3. Comparison of analog and digital recording - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_analog_and...

    The frequency response for a conventional LP player might be 20 Hz to 20 kHz, ±3 dB. The low-frequency response of vinyl records is restricted by rumble noise (described above), as well as the physical and electrical characteristics of the entire pickup arm and transducer assembly. The high-frequency response of vinyl depends on the cartridge.

  4. High frequency - Wikipedia

    en.wikipedia.org/wiki/High_frequency

    HF's position in the electromagnetic spectrum.. High frequency (HF) is the ITU designation [1] for the band of radio waves with frequency between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters (ten to one hundred meters).

  5. Music visualization - Wikipedia

    en.wikipedia.org/wiki/Music_visualization

    The first electronic music visualizer was the Atari Video Music introduced by Atari Inc. in 1977, and designed by the initiator of the home version of Pong, Robert Brown. The idea was to create a visual exploration that could be implemented into a Hi-Fi stereo system. [1] In the United Kingdom music visualization was first pioneered by Fred Judd.

  6. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    Ultra high frequency: 1 m: 300 MHz: 1.24 μeV Radio waves: VHF Very high frequency: 10 m 30 MHz 124 neV: HF High frequency: 100 m 3 MHz 12.4 neV MF Medium frequency: 1 km: 300 kHz: 1.24 neV LF Low frequency: 10 km 30 kHz 124 peV: VLF Very low frequency: 100 km 3 kHz 12.4 peV ULF Ultra low frequency: 1 Mm: 300 Hz: 1.24 peV SLF Super low ...

  7. Equal-loudness contour - Wikipedia

    en.wikipedia.org/wiki/Equal-loudness_contour

    The first research on the topic of how the ear hears different frequencies at different levels was conducted by Fletcher and Munson in 1933. Until recently, it was common to see the term Fletcher–Munson used to refer to equal-loudness contours generally, even though a re-determination was carried out by Robinson and Dadson in 1956, which became the basis for an ISO 226 standard.

  8. Audio system measurements - Wikipedia

    en.wikipedia.org/wiki/Audio_system_measurements

    A system may have low distortion for a steady-state signal, but not on sudden transients. In amplifiers, this problem can be traced to power supplies in some instances, to insufficient high-frequency performance or to excessive negative feedback. Related measurements are slew rate and rise time. Distortion in transient response can be hard to ...

  9. Time–frequency analysis for music signals - Wikipedia

    en.wikipedia.org/wiki/Time–frequency_analysis...

    Musical sound can be more complicated than human vocal sound, occupying a wider band of frequency. Music signals are time-varying signals; while the classic Fourier transform is not sufficient to analyze them, time–frequency analysis is an efficient tool for such use. Time–frequency analysis is extended from the classic Fourier approach.