Search results
Results from the WOW.Com Content Network
The sum of the series is approximately equal to 1.644934. [3] The Basel problem asks for the exact sum of this series (in closed form), as well as a proof that this sum is correct. Euler found the exact sum to be / and announced this discovery in 1735. His arguments were based on manipulations that were not justified at the time, although he ...
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
Because the sum of the reciprocals of the primes diverges, the Green–Tao theorem on arithmetic progressions is a special case of the conjecture. The weaker claim that A must contain infinitely many arithmetic progressions of length 3 is a consequence of an improved bound in Roth's theorem. A 2016 paper by Bloom [4] proved that if {,..
This example is an instance of the Few Sums, Many Products [6] version of the sum-product problem of György Elekes and Imre Z. Ruzsa. A consequence of their result is that any set with small additive doubling (such as an arithmetic progression) has the lower bound on the product set | AA | = Ω(| A | 2 log −1 (| A |)).
Although the proof of Dirichlet's Theorem makes use of calculus and analytic number theory, some proofs of examples are much more straightforward. In particular, the proof of the example of infinitely many primes of the form + makes an argument similar to the one made in the proof of Euclid's theorem (Silverman 2013). The proof is given below:
The case = coincides with that of the calculation of the arithmetic series, the sum of the first values of an arithmetic progression. This problem is quite simple but the case already known by the Pythagorean school for its connection with triangular numbers is historically interesting:
Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...
A summation method that is linear and stable cannot sum the series 1 + 2 + 3 + ⋯ to any finite value. (Stable means that adding a term at the beginning of the series increases the sum by the value of the added term.) This can be seen as follows. If + + + =, then adding 0 to both sides gives