Search results
Results from the WOW.Com Content Network
The four quadrants of a Cartesian coordinate system The axes of a two-dimensional Cartesian system divide the plane into four infinite regions , called quadrants , each bounded by two half-axes. The axes themselves are, in general, not part of the respective quadrants.
A small portion of the Cartesian coordinate system, showing the origin, axes, and the four quadrants, with illustrative points and grid. Date: 8 September 2008: Source: Made by K. Bolino , based upon earlier versions. Author: K. Bolino: Permission (Reusing this file) Insofar as to the work original to me,
A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. In a Cartesian plane, one can define canonical representatives of certain geometric figures, such as the unit circle (with radius equal to the length unit, and center at the origin), the unit square (whose diagonal has endpoints at (0, 0) and (1, 1)), the ...
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2,3) in green, (−3,1) in red, (−1.5,−2.5) in blue, and the origin (0,0) in purple. In analytic geometry, the plane is given a coordinate system, by which every point has a pair of real number coordinates.
Hyperbolic coordinates plotted on the Euclidean plane: all points on the same blue ray share the same coordinate value u, and all points on the same red hyperbola share the same coordinate value v. In mathematics, hyperbolic coordinates are a method of locating points in quadrant I of the Cartesian plane
A quadtree is a tree data structure in which each internal node has exactly four children. Quadtrees are the two-dimensional analog of octrees and are most often used to partition a two-dimensional space by recursively subdividing it into four quadrants or regions. The data associated with a leaf cell varies by application, but the leaf cell ...
In two dimensions, there are four orthants (called quadrants) In geometry, an orthant [1] or hyperoctant [2] is the analogue in n-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions. In general an orthant in n-dimensions can be considered the intersection of n mutually orthogonal half-spaces.