enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Global interpreter lock - Wikipedia

    en.wikipedia.org/wiki/Global_Interpreter_Lock

    Schematic representation of how threads work under GIL. Green - thread holding GIL, red - blocked threads. A global interpreter lock (GIL) is a mechanism used in computer-language interpreters to synchronize the execution of threads so that only one native thread (per process) can execute basic operations (such as memory allocation and reference counting) at a time. [1]

  3. Non-blocking algorithm - Wikipedia

    en.wikipedia.org/wiki/Non-blocking_algorithm

    An algorithm is lock-free if, when the program threads are run for a sufficiently long time, at least one of the threads makes progress (for some sensible definition of progress). All wait-free algorithms are lock-free. In particular, if one thread is suspended, then a lock-free algorithm guarantees that the remaining threads can still make ...

  4. Monitor (synchronization) - Wikipedia

    en.wikipedia.org/wiki/Monitor_(synchronization)

    enter the monitor: enter the method if the monitor is locked add this thread to e block this thread else lock the monitor leave the monitor: schedule return from the method wait c: add this thread to c.q schedule block this thread notify c: if there is a thread waiting on c.q select and remove one thread t from c.q (t is called "the notified ...

  5. Java concurrency - Wikipedia

    en.wikipedia.org/wiki/Java_concurrency

    Each thread can be scheduled [5] on a different CPU core [6] or use time-slicing on a single hardware processor, or time-slicing on many hardware processors. There is no general solution to how Java threads are mapped to native OS threads. Every JVM implementation can do this differently. Each thread is associated with an instance of the class ...

  6. Thread pool - Wikipedia

    en.wikipedia.org/wiki/Thread_pool

    By maintaining a pool of threads, the model increases performance and avoids latency in execution due to frequent creation and destruction of threads for short-lived tasks. [2] The number of available threads is tuned to the computing resources available to the program, such as a parallel task queue after completion of execution.

  7. Thread safety - Wikipedia

    en.wikipedia.org/wiki/Thread_safety

    However, deadlock-free guarantees cannot always be given, since deadlocks can be caused by callbacks and violation of architectural layering independent of the library itself. Software libraries can provide certain thread-safety guarantees. [5] For example, concurrent reads might be guaranteed to be thread-safe, but concurrent writes might not be.

  8. Multithreading (computer architecture) - Wikipedia

    en.wikipedia.org/wiki/Multithreading_(computer...

    Multiple threads can interfere with each other when sharing hardware resources such as caches or translation lookaside buffers (TLBs). As a result, execution times of a single thread are not improved and can be degraded, even when only one thread is executing, due to lower frequencies or additional pipeline stages that are necessary to accommodate thread-switching hardware.

  9. Thread (computing) - Wikipedia

    en.wikipedia.org/wiki/Thread_(computing)

    A process with two threads of execution, running on one processor Program vs. Process vs. Thread Scheduling, Preemption, Context Switching. In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. [1]