Search results
Results from the WOW.Com Content Network
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
Radioactive label on containers aboard a US Navy ship. Any quantity of packages bearing the RADIOACTIVE YELLOW III label (LSA-III). Some radioactive materials in "exclusive use" with low specific activity radioactive materials will not bear the label, however, the RADIOACTIVE placard is required.
The particle usually comes from the radioactive decay of an atom of a radioisotope, an isotope of an element which is radioactive. The electron then returns to its ground energy level by emitting the extra energy as a photon of light. A chemical that releases light of a particular color when struck by ionizing radiation is called a phosphor ...
The half-life of phosphorus-32 is 14.2 days, and its maximum specific activity is 9,131 kCi/mol (337.8 PBq/mol). Phosphorus-33 is used to label nucleotides. It is less energetic than phosphorus-32 and does not require protection with plexiglass.
Tritium radioluminescence is the use of gaseous tritium, a radioactive isotope of hydrogen, to create visible light. Tritium emits electrons through beta decay and, when they interact with a phosphor material, light is emitted through the process of phosphorescence .
Carbon-14 is a radioactive isotope of carbon, with a half-life of 5,730 years [28] [29] (which is very short compared with the above isotopes), and decays into nitrogen. [30] In other radiometric dating methods, the heavy parent isotopes were produced by nucleosynthesis in supernovas, meaning that any parent isotope with a short half-life ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Its immediate decay product is the dense radioactive noble gas radon (specifically the isotope 222 Rn), which is responsible for much of the danger of environmental radium. [14] [b] It is 2.7 million times more radioactive than the same molar amount of natural uranium (mostly uranium-238), due to its proportionally shorter half-life. [15] [16]