enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Its Euler characteristic is 0, by the product property. More generally, any compact parallelizable manifold, including any compact Lie group, has Euler characteristic 0. [12] The Euler characteristic of any closed odd-dimensional manifold is also 0. [13] The case for orientable examples is a corollary of Poincaré duality.

  3. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The five Platonic solids have an Euler characteristic of 2. This simply reflects that the surface is a topological 2-sphere, and so is also true, for example, of any polyhedron which is star-shaped with respect to some interior point.

  4. Surface (topology) - Wikipedia

    en.wikipedia.org/wiki/Surface_(topology)

    It is convenient to combine the two families by regarding the sphere as the connected sum of 0 tori. The number g of tori involved is called the genus of the surface. The sphere and the torus have Euler characteristics 2 and 0, respectively, and in general the Euler characteristic of the connected sum of g tori is 2 − 2g.

  5. Hairy ball theorem - Wikipedia

    en.wikipedia.org/wiki/Hairy_ball_theorem

    The connection with the Euler characteristic χ suggests the correct generalisation: the 2n-sphere has no non-vanishing vector field for n ≥ 1. The difference between even and odd dimensions is that, because the only nonzero Betti numbers of the m-sphere are b 0 and b m, their alternating sum χ is 2 for m even, and 0 for m odd.

  6. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    Thus 2 is a topological invariant of the sphere, called its Euler characteristic. On the other hand, a torus can be sliced open by its 'parallel' and 'meridian' circles, creating a map with V = 1 vertex, E = 2 edges, and F = 1 face. Thus the Euler characteristic of the torus is 1 − 2 + 1 = 0.

  7. Euler class - Wikipedia

    en.wikipedia.org/wiki/Euler_class

    As the Euler class for an even sphere corresponds to [] (,), we can use the fact that the Euler class of a Whitney sum of two bundles is just the cup product of the Euler classes of the two bundles to see that there are no other subbundles of the tangent bundle than the tangent bundle itself and the null bundle, for any even-dimensional sphere.

  8. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    For polyhedra defined in these ways, the classification of manifolds implies that the topological type of the surface is completely determined by the combination of its Euler characteristic and orientability. For example, every polyhedron whose surface is an orientable manifold and whose Euler characteristic is 2 must be a topological sphere. [31]

  9. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron {5,3} and icosahedron {3,5}: As spherical tilings, these star forms overlap the sphere multiple times, called its density, being 3 or 7 for these forms.

  1. Related searches euler characteristic for a sphere is called a polar compound because two

    euler characteristics formulaeuler's formula
    euler's characteristics