enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    Cutting planes were proposed by Ralph Gomory in the 1950s as a method for solving integer programming and mixed-integer programming problems. However, most experts, including Gomory himself, considered them to be impractical due to numerical instability, as well as ineffective because many rounds of cuts were needed to make progress towards the solution.

  3. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  4. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    In each iteration of the method, we increase the penalty coefficient (e.g. by a factor of 10), solve the unconstrained problem and use the solution as the initial guess for the next iteration. Solutions of the successive unconstrained problems will asymptotically converge to the solution of the original constrained problem.

  5. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    The most common case is the case in which the graph admits a one-sided-perfect matching (i.e., a matching of size r), and s=r. Unbalanced assignment can be reduced to a balanced assignment. The naive reduction is to add n − r {\displaystyle n-r} new vertices to the smaller part and connect them to the larger part using edges of cost 0.

  6. Barrier function - Wikipedia

    en.wikipedia.org/wiki/Barrier_function

    This problem is equivalent to the first. It gets rid of the inequality, but introduces the issue that the penalty function c, and therefore the objective function f(x) + c(x), is discontinuous, preventing the use of calculus to solve it. A barrier function, now, is a continuous approximation g to c that tends to infinity as x approaches b from ...

  7. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    The machine will perform the following three steps on any odd number until only one 1 remains: Append 1 to the (right) end of the number in binary (giving 2n + 1); Add this to the original number by binary addition (giving 2n + 1 + n = 3n + 1); Remove all trailing 0 s (that is, repeatedly divide by 2 until the result is odd).

  8. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The strong duality theorem says that if one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight, i.e.: max x c T x = min y b T y. The strong duality theorem is harder to prove; the proofs usually use the weak duality theorem as a sub-routine.

  9. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    One can turn the linear programming relaxation for this problem into an approximate solution of the original unrelaxed set cover instance via the technique of randomized rounding. [2] Given a fractional cover, in which each set S i has weight w i , choose randomly the value of each 0–1 indicator variable x i to be 1 with probability w i × ...