Search results
Results from the WOW.Com Content Network
However, some of the early successes of molecular engineering have come in the fields of immunotherapy, synthetic biology, and printable electronics (see molecular engineering applications). Molecular engineering is a dynamic and evolving field with complex target problems; breakthroughs require sophisticated and creative engineers who are ...
His Ph.D. work was the first doctoral degree on the topic of molecular nanotechnology and his thesis, "Molecular Machinery and Manufacturing with Applications to Computation", was published (with minor editing) as Nanosystems: Molecular Machinery, Manufacturing and Computation (1992), which received the Association of American Publishers award ...
The Car–Parrinello method is a type of molecular dynamics, usually employing periodic boundary conditions, planewave basis sets, and density functional theory, proposed by Roberto Car and Michele Parrinello in 1985 while working at SISSA, [1] who were subsequently awarded the Dirac Medal by ICTP in 2009.
Molecular orbital theory was seen as a competitor to valence bond theory in the 1930s, before it was realized that the two methods are closely related and that when extended they become equivalent. Molecular orbital theory is used to interpret ultraviolet–visible spectroscopy (UV–VIS). Changes to the electronic structure of molecules can be ...
In two papers outlining his "theory of atomicity of the elements" (1857–58), Friedrich August Kekulé was the first to offer a theory of how every atom in an organic molecule was bonded to every other atom. He proposed that carbon atoms were tetravalent, and could bond to themselves to form the carbon skeletons of organic molecules.
Molecular modelling encompasses all methods, theoretical and computational, used to model or mimic the behaviour of molecules. [1] The methods are used in the fields of computational chemistry, drug design, computational biology and materials science to study molecular systems ranging from small chemical systems to large biological molecules and material assemblies.
Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms [1] and energy scales around several electron volts. [2]: 1356 [3] The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments.
The main engineering strategies currently in use are hydrogen-and halogen bonding and coordination bonding. [2] These may be understood with key concepts such as the supramolecular synthon and the secondary building unit. [3] An example of crystal engineering using hydrogen bonding reported by Wuest and coworkers in J. Am. Chem. Soc., 2007 ...