Search results
Results from the WOW.Com Content Network
In the first example provided above, the sex of the patient would be a nuisance variable. For example, consider if the drug was a diet pill and the researchers wanted to test the effect of the diet pills on weight loss. The explanatory variable is the diet pill and the response variable is the amount of weight loss.
It is explanatory knowledge that provides scientific understanding of the world. (Salmon, 2006, pg. 3) [1] According to the National Research Council (United States): "Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work." [2]
Confounding is defined in terms of the data generating model. Let X be some independent variable, and Y some dependent variable.To estimate the effect of X on Y, the statistician must suppress the effects of extraneous variables that influence both X and Y.
Use of the phrase "working hypothesis" goes back to at least the 1850s. [7]Charles Sanders Peirce came to hold that an explanatory hypothesis is not only justifiable as a tentative conclusion by its plausibility (by which he meant its naturalness and economy of explanation), [8] but also justifiable as a starting point by the broader promise that the hypothesis holds for research.
For example, if an outdoor experiment were to be conducted to compare how different wing designs of a paper airplane (the independent variable) affect how far it can fly (the dependent variable), one would want to ensure that the experiment is conducted at times when the weather is the same, because one would not want weather to affect the ...
In multivariate statistics, exploratory factor analysis (EFA) is a statistical method used to uncover the underlying structure of a relatively large set of variables. EFA is a technique within factor analysis whose overarching goal is to identify the underlying relationships between measured variables. [1]
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.
Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1] [2] Exploratory causal analysis (ECA), also known as data causality or causal discovery [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions.