enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

  3. Collineation - Wikipedia

    en.wikipedia.org/wiki/Collineation

    This is different from the behavior in higher dimensions, and thus one gives a more restrictive definition, specified so that the fundamental theorem of projective geometry holds. In this definition, when V has dimension two, a collineation from PG ( V ) to PG ( W ) is a map α : D ( V ) → D ( W ) , such that:

  4. Collinearity equation - Wikipedia

    en.wikipedia.org/wiki/Collinearity_equation

    Let x, y, and z refer to a coordinate system with the x- and y-axis in the sensor plane. Denote the coordinates of the point P on the object by ,,, the coordinates of the image point of P on the sensor plane by x and y and the coordinates of the projection (optical) centre by ,,.

  5. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    In geometry, Monge's theorem, named after Gaspard Monge, states that for any three circles in a plane, none of which is completely inside one of the others, the intersection points of each of the three pairs of external tangent lines are collinear.

  6. Cross-ratio - Wikipedia

    en.wikipedia.org/wiki/Cross-ratio

    In 1847, von Staudt demonstrated that the algebraic structure is implicit in projective geometry, by creating an algebra based on construction of the projective harmonic conjugate, which he called a throw (German: Wurf): given three points on a line, the harmonic conjugate is a fourth point that makes the cross ratio equal to −1.

  7. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  8. Affine plane (incidence geometry) - Wikipedia

    en.wikipedia.org/wiki/Affine_plane_(incidence...

    There exist four points such that no three are collinear (points not on a single line). In an affine plane, two lines are called parallel if they are equal or disjoint. Using this definition, Playfair's axiom above can be replaced by: [2] Given a point and a line, there is a unique line which contains the point and is parallel to the line.

  9. General position - Wikipedia

    en.wikipedia.org/wiki/General_position

    Thus, in Euclidean geometry three non-collinear points determine a circle (as the circumcircle of the triangle they define), but four points in general do not (they do so only for cyclic quadrilaterals), so the notion of "general position with respect to circles", namely "no four points lie on a circle" makes sense. In projective geometry, by ...