Search results
Results from the WOW.Com Content Network
where ⌊ x ⌋ is the floor function, which denotes the greatest integer less than or equal to x and the p i run over all primes ≤ √ x. [ 1 ] [ 2 ] Since the evaluation of this sum formula becomes more and more complex and confusing for large x , Meissel tried to simplify the counting of the numbers in the Sieve of Eratosthenes.
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]
The above obscure-but-commonly-implemented Python version of the Sieve of Sundaram hides the true complexity of the algorithm due to the following reasons: The range for the outer i looping variable is much too large, resulting in redundant looping that cannot perform any composite number culling; the proper range is to the array indices that ...
A prime sieve works by creating a list of all integers up to a desired limit and progressively removing composite numbers (which it directly generates) until only primes are left. This is the most efficient way to obtain a large range of primes; however, to find individual primes, direct primality tests are more efficient [ citation needed ] .
let s > 0 and d odd > 0 such that n − 1 = 2 s d # by factoring out powers of 2 from n − 1 repeat k times: a ← random(2, n − 2) # n is always a probable prime to base 1 and n − 1 x ← a d mod n repeat s times: y ← x 2 mod n if y = 1 and x ≠ 1 and x ≠ n − 1 then # nontrivial square root of 1 modulo n return “composite” x ...
If it is 1, then n may be prime. If a n −1 (modulo n) is 1 but n is not prime, then n is called a pseudoprime to base a. In practice, if a n −1 (modulo n) is 1, then n is usually prime. But here is a counterexample: if n = 341 and a = 2, then even though 341 = 11·31 is composite.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...