enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    Trachtenberg defined this algorithm with a kind of pairwise multiplication where two digits are multiplied by one digit, essentially only keeping the middle digit of the result. By performing the above algorithm with this pairwise multiplication, even fewer temporary results need to be held. Example:

  3. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The standard procedure for multiplication of two n-digit numbers requires a number of elementary operations proportional to , or () in big-O notation. Andrey Kolmogorov conjectured that the traditional algorithm was asymptotically optimal, meaning that any algorithm for that task would require () elementary operations.

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    More formally, multiplying two n-digit numbers using long multiplication requires Θ(n 2) single-digit operations (additions and multiplications). When implemented in software, long multiplication algorithms must deal with overflow during additions, which can be expensive.

  5. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    It is an in-person competition that occurs every other year in Germany. It consists of four different standard tasks --- addition of ten ten-digit numbers, multiplication of two eight-digit numbers, calculation of square roots, and calculation of weekdays for given dates --- in addition to a variety of "surprise" tasks. [10]

  6. Lattice multiplication - Wikipedia

    en.wikipedia.org/wiki/Lattice_multiplication

    As an example, consider the multiplication of 58 with 213. After writing the multiplicands on the sides, consider each cell, beginning with the top left cell. In this case, the column digit is 5 and the row digit is 2. Write their product, 10, in the cell, with the digit 1 above the diagonal and the digit 0 below the diagonal (see picture for ...

  7. Napier's bones - Wikipedia

    en.wikipedia.org/wiki/Napier's_bones

    The corresponding bones to the leading number are placed in the board. For this example, the bones 8, 2, and 5 were placed in the proper order as shown below. First step of solving 825 × 913. To multiply by a multi-digit number, multiple rows are reviewed. For this example, the rows for 9, 1, and 3 have been removed from the board for clarity.

  8. Chisanbop - Wikipedia

    en.wikipedia.org/wiki/Chisanbop

    The Chisanbop system. When a finger is touching the table, it contributes its corresponding number to a total. Chisanbop or chisenbop (from Korean chi (ji) finger + sanpŏp (sanbeop) calculation [1] 지산법/指算法), sometimes called Fingermath, [2] is a finger counting method used to perform basic mathematical operations.

  9. Promptuary - Wikipedia

    en.wikipedia.org/wiki/Promptuary

    The units digit of this addition, 1, is written down as the next digit of the multiplication result. The tens digit, which is 1, is carried into the next band. The third band from the right has five digits, 2, 4, 3, 1 and 6 plus the carried 1. These are all added to produce 17. The units digit of this, 7, is written as the next digit of the result.