enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetrically continuous function - Wikipedia

    en.wikipedia.org/wiki/Symmetrically_continuous...

    Also, symmetric differentiability implies symmetric continuity, but the converse is not true just like usual continuity does not imply differentiability. The set of the symmetrically continuous functions, with the usual scalar multiplication can be easily shown to have the structure of a vector space over R {\displaystyle \mathbb {R ...

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces.

  4. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    Moreover, the fact that the set of non-differentiability points for a monotone function is measure-zero implies that the rapid oscillations of Weierstrass' function are necessary to ensure that it is nowhere-differentiable. The Weierstrass function was one of the first fractals studied, although this term was not used until much later. The ...

  5. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    Absolute continuity of measures is reflexive and transitive, but is not antisymmetric, so it is a preorder rather than a partial order. Instead, if μ ≪ ν {\displaystyle \mu \ll \nu } and ν ≪ μ , {\displaystyle \nu \ll \mu ,} the measures μ {\displaystyle \mu } and ν {\displaystyle \nu } are said to be equivalent .

  6. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain. [ 1 ] A function of class C k {\displaystyle C^{k}} is a function of smoothness at least k ; that is, a function of class C k {\displaystyle C^{k}} is a function that has a k th ...

  7. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Differentiability is therefore a stronger regularity condition (condition describing the "smoothness" of a function) than continuity, and it is possible for a function to be continuous on the entire real line but not differentiable anywhere (see Weierstrass's nowhere differentiable continuous function). It is possible to discuss the existence ...

  8. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when

  9. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    The theorem cannot be applied to this function because it does not satisfy the condition that the function must be differentiable for every x in the open interval. However, when the differentiability requirement is dropped from Rolle's theorem, f will still have a critical number in the open interval ( a , b ) , but it may not yield a ...