Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
A given mathematical symbol in the source code, by operator overloading, will invoke different object code appropriate to the representation of the numerical type; mathematical operations on any number—whether signed, unsigned, rational, floating-point, fixed-point, integral, or complex—are written exactly the same way.
Fixed-point representation of the rationals Integer , a direct representation of either the integers or the non-negative integers Reference , sometimes erroneously referred to as a pointer or handle, is a value that refers to another value, possibly including itself
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.
If the desired real world values are in the range [0,160], they must be scaled to fit within this fixed-point representation. A scale factor of 1 ⁄ 10 cannot be used here, because scaling 160 by 1 ⁄ 10 gives 16, which is greater than the greatest value that can be stored in this fixed-point format.
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set.
Computer arithmetic is the scientific field that deals with representation of numbers on computers and corresponding implementations of the arithmetic operations. [1] [2] It includes: Fixed-point arithmetic; Floating-point arithmetic; Interval arithmetic; Arbitrary-precision arithmetic; Modular arithmetic. Multi-modular arithmetic
Depending on how a computer is organized, word-size units may be used for: Fixed-point numbers Holders for fixed point, usually integer, numerical values may be available in one or in several different sizes, but one of the sizes available will almost always be the word. The other sizes, if any, are likely to be multiples or fractions of the ...