Search results
Results from the WOW.Com Content Network
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2257 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.
A table of some typical values can be found under dielectric constant. Water has a relatively high dielectric constant value of 78.7 at 298K (25 °C), so in aqueous solutions at ambient temperatures 1:1 electrolytes such as NaCl do not form ion pairs to an appreciable extent except when the solution is very concentrated.
Another common term encountered for both absolute and relative permittivity is the dielectric constant which has been deprecated in physics and engineering [2] as well as in chemistry. [ 3 ] By definition, a perfect vacuum has a relative permittivity of exactly 1 whereas at standard temperature and pressure , air has a relative permittivity of ...
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.
) and the concentration of hydroxide (OH −) are increased while the pH remains neutral. Specific heat capacity at constant pressure also increases with temperature, from 4.187 kJ/kg at 25 °C to 8.138 kJ/kg at 350 °C. A significant effect on the behaviour of water at high temperatures is decreased dielectric constant (relative permittivity). [2]
A liquid dielectric is a dielectric material in liquid state. Its main purpose is to prevent or rapidly quench electric discharges.Dielectric liquids are used as electrical insulators in high voltage applications, e.g. transformers, capacitors, high voltage cables, and switchgear (namely high voltage switchgear).
In the semiconductor industry, the term high-κ dielectric refers to a material with a high dielectric constant (κ, kappa), as compared to silicon dioxide.High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device.