Search results
Results from the WOW.Com Content Network
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
The only additional data structure needed by the algorithm is an ordered list L of graph vertices, that will grow to contain each vertex once. If strong components are to be represented by appointing a separate root vertex for each component, and assigning to each vertex the root vertex of its component, then Kosaraju's algorithm can be stated ...
The adjacency lists for the remaining nodes that could not be found in H need to be fetched. A scan over L ( t − 1 ) {\displaystyle L(t-1)} yields the partition identifiers. After sorting and deletion of duplicates, the respective files F i {\displaystyle F_{i}} can be concatenated into a temporary file F' .
A decision version of the problem (testing whether some vertex u occurs before some vertex v in this order) is P-complete, [12] meaning that it is "a nightmare for parallel processing". [13]: 189 A depth-first search ordering (not necessarily the lexicographic one), can be computed by a randomized parallel algorithm in the complexity class RNC ...
In the example on the left, there are two arrays, C and R. Array C stores the adjacency lists of all nodes. Array R stored the index in C, the entry R[i] points to the beginning index of adjacency lists of vertex i in array C. The CSR is extremely fast because it costs only constant time to access vertex adjacency.
In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines ...
The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.