enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.

  3. Category of rings - Wikipedia

    en.wikipedia.org/wiki/Category_of_rings

    Examples of limits and colimits in Ring include: The ring of integers Z is an initial object in Ring. The zero ring is a terminal object in Ring. The product in Ring is given by the direct product of rings. This is just the cartesian product of the underlying sets with addition and multiplication defined component-wise.

  4. Universal property - Wikipedia

    en.wikipedia.org/wiki/Universal_property

    Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.

  5. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    If A is an object of C, then the functor from C to Set that sends X to Hom C (X,A) (the set of morphisms in C from X to A) is an example of such a functor. If C is a small category (i.e. the collection of its objects forms a set), then the contravariant functors from C to Set, together with natural transformations as morphisms, form a new ...

  6. Limit (category theory) - Wikipedia

    en.wikipedia.org/wiki/Limit_(category_theory)

    Given a diagram F: J → C (thought of as an object in C J), a natural transformation ψ : Δ(N) → F (which is just a morphism in the category C J) is the same thing as a cone from N to F. To see this, first note that Δ(N)(X) = N for all X implies that the components of ψ are morphisms ψ X : N → F(X), which all share the domain N.

  7. Category of small categories - Wikipedia

    en.wikipedia.org/wiki/Category_of_small_categories

    The initial object of Cat is the empty category 0, which is the category of no objects and no morphisms. [1] The terminal object is the terminal category or trivial category 1 with a single object and morphism. [2] The category Cat is itself a large category, and therefore not an object of itself. In order to avoid problems analogous to Russell ...

  8. Cartesian closed category - Wikipedia

    en.wikipedia.org/wiki/Cartesian_closed_category

    However, LH does not have a terminal object, and thus is not Cartesian closed. If C has pullbacks and for every arrow p : X → Y, the functor p * : C/Y → C/X given by taking pullbacks has a right adjoint, then C is locally Cartesian closed. If C is locally Cartesian closed, then all of its slice categories C/X are also locally Cartesian closed.

  9. Strict initial object - Wikipedia

    en.wikipedia.org/wiki/Strict_initial_object

    In the mathematical discipline of category theory, a strict initial object is an initial object 0 of a category C with the property that every morphism in C with codomain 0 is an isomorphism. In a Cartesian closed category, every initial object is strict. [1] Also, if C is a distributive or extensive category, then the initial object 0 of C is ...