Search results
Results from the WOW.Com Content Network
The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar to turbulent flow and is used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full-size version ...
The main parameter characterizing transition is the Reynolds number. Transition is often described as a process proceeding through a series of stages. Transitional flow can refer to transition in either direction, that is laminar–turbulent transitional or turbulent–laminar transitional flow.
Conventionally, = 2.59 (Blasius boundary layer) is typical of laminar flows, while = 1.3 - 1.4 is typical of turbulent flows near the laminar-turbulent transition. [16] For turbulent flows near separation, 2.7. [17] The dividing line defining laminar-transitional and transitional-turbulent values is dependent on a number of factors so it is not ...
In the field of fluid dynamics the point at which the boundary layer changes from laminar to turbulent is called the transition point.Where and how this transition occurs depends on the Reynolds number, the pressure gradient, pressure fluctuations due to sound, surface vibration, the initial turbulence level of the flow, boundary layer suction, surface heat flows, and surface roughness.
A secondary influence is the Reynolds number. For a given adverse / distribution, the separation resistance of a turbulent boundary layer increases slightly with increasing Reynolds number. In contrast, the separation resistance of a laminar boundary layer is independent of Reynolds number — a somewhat counterintuitive fact.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
As the Reynolds number increases, such as by increasing the flow rate of the fluid, the flow will transition from laminar to turbulent flow at a specific range of Reynolds numbers, the laminar–turbulent transition range depending on small disturbance levels in the fluid or imperfections in the flow system.
Depending on the effect of viscosity relative to inertia, as represented by the Reynolds number, the flow can be either laminar or turbulent. For circular pipes of different surface roughness, at a Reynolds number below the critical value of approximately 2000 [ 2 ] pipe flow will ultimately be laminar, whereas above the critical value ...