Search results
Results from the WOW.Com Content Network
[3] [49] It can perform as an 8-bit 8051, has 24-bit linear addressing, an 8-bit ALU, 8-bit instructions, 16-bit instructions, a limited set of 32-bit instructions, 16 8-bit registers, 16 16-bit registers (8 16-bit registers which do not share space with any 8-bit registers, and 8 16-bit registers which contain 2 8-bit registers per 16-bit ...
Some programming languages such as Lisp, Python, Perl, Haskell, Ruby and Raku use, or have an option to use, arbitrary-precision numbers for all integer arithmetic. Although this reduces performance, it eliminates the possibility of incorrect results (or exceptions) due to simple overflow.
The Infineon XC800 family is an 8-bit microcontroller family, first introduced in 2005, [1] with a dual cycle optimized 8051 "E-Warp" [2] [3] core. The XC800 family is divided into two categories, the A-Family for Automotive and the I-Family for Industrial and multi-market applications.
The operation may be used to determine whether a particular bit is set (1) or cleared (0). For example, given a bit pattern 0011 (decimal 3), to determine whether the second bit is set we use a bitwise AND with a bit pattern containing 1 only in the second bit: 0011 (decimal 3) AND 0010 (decimal 2) = 0010 (decimal 2)
xxHash [8] 32, 64 or 128 bits product/rotation t1ha (Fast Positive Hash) [9] 64 or 128 bits product/rotation/XOR/add GxHash [10] 32, 64 or 128 bits AES block cipher pHash [11] fixed or variable see Perceptual hashing: dhash [12] 128 bits see Perceptual hashing: SDBM [2] [13] 32 or 64 bits mult/add or shift/add also used in GNU AWK: OSDB hash ...
When the data word is divided into 8-bit blocks, as in the example above, two 8-bit sums result and are combined into a 16-bit Fletcher checksum. Usually, the second sum will be multiplied by 256 and added to the simple checksum, effectively stacking the sums side-by-side in a 16-bit word with the simple checksum at the least significant end.
For x86 ALU size of 8 bits, an 8-bit two's complement interpretation, the addition operation 11111111 + 11111111 results in 111111110, Carry_Flag set, Sign_Flag set, and Overflow_Flag clear. If 11111111 represents two's complement signed integer −1 ( ADD al,-1 ), then the interpretation of the result is -2 because Overflow_Flag is clear, and ...
However, a binary number system with base −2 is also possible. The rightmost bit represents (−2) 0 = +1, the next bit represents (−2) 1 = −2, the next bit (−2) 2 = +4 and so on, with alternating sign. The numbers that can be represented with four bits are shown in the comparison table below.