enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  3. Completely randomized design - Wikipedia

    en.wikipedia.org/wiki/Completely_randomized_design

    (where ! denotes factorial) possible run sequences (or ways to order the experimental trials). Because of the replication , the number of unique orderings is 90 (since 90 = 6!/(2!*2!*2!)). An example of an unrandomized design would be to always run 2 replications for the first level, then 2 for the second level, and finally 2 for the third level.

  4. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    Sample extrema can be used for normality testing, as events beyond the 3σ range are very rare. The sample extrema can be used for a simple normality test, specifically of kurtosis: one computes the t-statistic of the sample maximum and minimum (subtracts sample mean and divides by the sample standard deviation), and if they are unusually large ...

  5. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Where is the sample size, = / is the fraction of the sample from the population, () is the (squared) finite population correction (FPC), is the unbiassed sample variance, and (¯) is some estimator of the variance of the mean under the sampling design. The issue with the above formula is that it is extremely rare to be able to directly estimate ...

  6. Randomization - Wikipedia

    en.wikipedia.org/wiki/Randomization

    Randomization is a statistical process in which a random mechanism is employed to select a sample from a population or assign subjects to different groups. [1] [2] [3] The process is crucial in ensuring the random allocation of experimental units or treatment protocols, thereby minimizing selection bias and enhancing the statistical validity. [4]

  7. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    where n is the sample size, N is the population size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively. A computationally simpler but slightly less accurate version of this estimator is

  8. Randomized experiment - Wikipedia

    en.wikipedia.org/wiki/Randomized_experiment

    The difference between these two potential outcomes is known as the treatment effect, which is the causal effect of the treatment on the outcome. Most commonly, randomized experiments are analyzed using ANOVA, student's t-test, regression analysis, or a similar statistical test. The model also accounts for potential confounding factors, which ...

  9. Average treatment effect - Wikipedia

    en.wikipedia.org/wiki/Average_treatment_effect

    In a randomized trial (i.e., an experimental study), the average treatment effect can be estimated from a sample using a comparison in mean outcomes for treated and untreated units. However, the ATE is generally understood as a causal parameter (i.e., an estimate or property of a population ) that a researcher desires to know, defined without ...