Search results
Results from the WOW.Com Content Network
The Hartley oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by a tuned circuit consisting of capacitors and inductors, that is, an LC oscillator. The circuit was invented in 1915 by American engineer Ralph Hartley .
The Leeson equation is presented in various forms. In the above equation, if f c is set to zero the equation represents a linear analysis of a feedback oscillator in the general case (and flicker noise is not included), it is for this that Leeson is most recognised, showing a −20 dB/decade of offset frequency slope. If used correctly, the ...
In physics, a system with a set of conservative forces and an equilibrium point can be approximated as a harmonic oscillator near equilibrium. An example of this is the Lennard-Jones potential , where the potential is given by: U ( r ) = U 0 [ ( r 0 r ) 12 − ( r 0 r ) 6 ] {\displaystyle U(r)=U_{0}\left[\left({\frac {r_{0}}{r}}\right)^{12 ...
The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...
LC circuits are used either for generating signals at a particular frequency, or picking out a signal at a particular frequency from a more complex signal; this function is called a bandpass filter. They are key components in many electronic devices, particularly radio equipment, used in circuits such as oscillators , filters , tuners and ...
Ralph Vinton Lyon Hartley (November 30, 1888 – May 1, 1970) was an American electronics researcher. He invented the Hartley oscillator and the Hartley transform, and contributed to the foundations of information theory. His legacy includes the naming of the hartley, a unit of information equal to one decimal digit, after him.
where ω ≡ 2πν is the fundamental frequency of the oscillator. The ground state of the oscillator is designated by | 0 {\displaystyle |0\rangle } ; and is referred to as the "vacuum state". It can be shown that a † {\displaystyle a^{\dagger }} is an excitation operator, it excites from an n fold excited state to an n + 1 fold excited state:
Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators , such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.